Our directory of things of interest

University Directory

Long-lived pioneers: understanding the carbon-storage potential of trees

  • Written by  Jacob Dykes
  • Published in Forests
Long-lived pioneers: understanding the carbon-storage potential of trees
24 Jun
2020
To protect the forests that act as natural carbon reservoirs, researchers need to better understand how individual tree species respond to climate change

Forest management is a key strategy for climate change mitigation: incentives such as the UN REDD+ policy framework, have emerged to safeguard forest areas acting as natural carbon reservoirs. However, to ensure that forests are managed effectively, researchers need a better understanding of how individual species behave over time, and how carbon storage in their biomass will respond to climate change.

SUBSCRIBE TO OUR MONTHLY PRINT MAGAZINE!
Subscribe to Geographical today for just £38 a year. Our monthly print magazine is packed full of cutting-edge stories and stunning photography, perfect for anyone fascinated by the world, its landscapes, people and cultures. From climate change and the environment, to scientific developments and global health, we cover a huge range of topics that span the globe. Plus, every issue includes book recommendations, infographics, maps and more!

New research, led by Nadja Rüger of the German Centre for Integrative Biodiversity Research, and Caroline Farrior of the University of Texas at Austin, could help researchers accurately predict forest carbon dynamics in the future.

‘As climate change looms, we’re moving into scenarios that we haven’t seen before,’ says Farrior. ‘There’s so much forest across the world that isn’t managed effectively. Having a mechanistic understanding of the carbon storage potential of forests, both in the present and future, has huge implications for predicting the effects of climate change.’

Rüger and the team have a clear mission: ‘To improve vegetation models, so that they can be reliably coupled with climate models.’ Simple enough – the only snag is that tropical forests form some of the richest biomes on earth. Diverse forests will not change as monolithic units; each species of tree will react differently, forming dynamic structures of forests that current vegetation models are unequipped to accurately predict.

The team’s research could simplify the problem of this diversity. Using trait data of 282 tree species within the tropical forest of Barro Colorado Island, Panama, they demonstrated that complex tree dynamics, such as growth, reproduction, and biomass, can be modelled using just two axes of tree characteristics.

The traits of individual forest species are usually mapped according to the balance between growth and survival – organisms that grow fast usually die young, or they grow slowly and reach longevity. However, the new research factors in the characteristics of stature and reproduction – organisms that grow tall invest lightly in reproduction, whereas shorter ones produce many offspring.

By incorporating the stature-reproduction axis, the researchers were able to factor in the taller, older trees that were overlooked by previous models of growth and survival. The new model shows that so called ‘long-lived pioneer’ species that reproduce slowly, constitute a large proportion of forest biomass and are therefore critical for long-term carbon storage.

Farrior thinks that researchers are now sharpening their predictive toolkit for understanding forests’ responses to climate change: ‘We’re getting closer to having a model that’s predictive.’ The next step will be to use predictive forest models to guide management strategies that protect the species which have the highest carbon-storage potential.

Stay connected with the Geographical newsletter!
signup buttonIn these turbulent times, we’re committed to telling expansive stories from across the globe, highlighting the everyday lives of normal but extraordinary people. Stay informed and engaged with Geographical.

Get Geographical’s latest news delivered straight to your inbox every Friday!

Related items

NEVER MISS A STORY - Follow Geographical on Social

Want to stay up to date with breaking Geographical stories? Join the thousands following us on Twitter, Facebook and Instagram and stay informed about the world.

More articles in PLACES...

Water

A new device, developed at ETH Zurich, could help communities…

Forests

A new initiative to save mangrove forests in the Dominican…

Deserts

The semi-autonomous Russian republic of Kalmykia sits at the forefront…

Cities

In Mogadishu, the troubled capital of Somalia, tentative moves towards…

Mountains

Researchers have predicted the birth of a new mountain range,…

Forests

Archaeological work around Lake Malawi suggests that humans manipulated the…

Water

Maida Bilal risked all to prevent contractors building a dam…

Places

Writer and photographer John Gilbey needed a cheap way of…

Water

An EU project has revealed the extent of river fragmentation…

Mapping

A new, double-sided world map projection seeks to minimise the…

Water

 Water scarcity is predicted to rise – two experts share…

Mountains

New collaborative research from the University of Oxford and the…

Places

Conceived during the late 1800s, Letchworth Garden City was the…

Places

Multiple failed attempts to build on a patch of land…

Deserts

New 'deep learning' technology is helping to identify trees in…

Places

The land around the Kinabatangan River in the state of…

Places

Highlights from the column that keeps you connected with the…

Places

At the end of a perplexing and thought-provoking year, we…

Places

The city of Mosul is slowly putting itself back together…