The Nepal Earthquake: a warning for the future?

  • Written by  Dave Petley
  • Published in Tectonics
Earthquake damaged buildings in Durbar Square, Kathmandu, Nepal Earthquake damaged buildings in Durbar Square, Kathmandu, Nepal think4photop
22 Jan
2016
There is a temptation to believe that Nepal is now safe; the fault has released energy and the buildings proved to be more resilient than expected. However, investigations of the earthquake indicate this would be a dangerous view

On 25 April 2015, Nepal was stuck by the magnitude 7.8 Gorkha earthquake, followed on 12 May 2015 by an aftershock of magnitude 7.3. The effects of these earthquakes have been widely reported, with almost 9,000 people killed, over 22,000 injured, and more than 600,000 private houses and almost 20,000 school classrooms destroyed. The start of the reconstruction phase has been long delayed, with the arrangements mired in political machinations. The upshot is that a very large proportion of the affected population has had to endure first the summer monsoon, and now the bitterly cold Nepali winter, with little or no suitable shelter.

It was well known that Nepal was overdue a major earthquake – indeed, as our understanding of the very complex plate tectonics beneath the Himalayas and the Tibetan Plateau has improved, the warnings of the risks have become ever stronger. In terms of Nepal as a nation, the main threat lies in a section of the major fault that provides the boundary between the Himalayas to the north and the Indian continental mass to the south. This fault runs across the southern part of Nepal, but the main concern lies in the section that runs westwards from a little south of Kathmandu. This section of fault suffered a very large and extremely damaging earthquake in 1505, but has not had a large event since. This indicates that the fault has stored a vast amount of energy, and thus is prone to a large earthquake. It was indeed this section of fault that ruptured to generate the earthquake in April.

shakemap
Mapping the epicentre of last year’s Nepal earthquakes (Image: USGS)

It had been widely anticipated that the effects of an earthquake on this fault would be catastrophic. Indeed, the number of deaths in Kathmandu was expected to exceed 70,000 with many more in the rural regions. Nepal appears to have a very high level of vulnerability to the effects of earthquake shaking, with large numbers of buildings not reinforced against the effects of earthquakes, and many steep, unstable slopes that have the potential to generate landslides. In this context, Nepal appears to have fared surprisingly well in the 2015 quake, recognising of course the desperately sad losses that did occur. As a result there is a temptation to believe that Nepal is now safe – that the fault has released energy and the buildings proved to be more resilient than expected.

However, investigations of the earthquake, undertaken through the combined efforts of researchers around the world (with significant contributions from within Nepal itself), indicate that this would be a dangerous view. We are able to understand the earthquake, and the rupture processes on the fault that generated it through analysis of the earthquake records obtained from seismic instruments, and measurements of how the crust has displaced (obtained from both radar satellites and GPS). This information has been combined with geological maps and cross-sections (fieldwork still plays a key role) to provide a detailed picture of the processes that occurred that day.

What is very clear is that only a small section of the fault, lying to the east of the epicentre, ruptured to generate the earthquake. This rupture event seems to have occurred on a section of the fault that is not typical of the rest. Perhaps most importantly, the seismic records suggest that the rupture event occurred quite slowly, especially in the southern section of the fault (the section that lies close to Kathmandu and other more densely populated areas of the Hill districts in Nepal). The section of the fault to the north, under the steeper slopes of the higher mountains, ruptured more rapidly. This is critically important, as slow ruptures generally generate low frequency shaking, whereas it is high frequency shaking under which weak buildings tend to perform extremely poorly. In the Gorkha earthquake, the most densely populated areas were spared this damaging shaking simply because of the way the rupture occurred. To the north, the population was subjected to shaking with a much higher frequency, and, unsurprisingly, this is where most of the damage occurred, both in terms of landslides and building collapses. Thus, the low level of building damage in Kathmandu results mostly from the unusual way in which this section of fault behaved.

The challenge for the scientific community and disaster managers is to ensure that there is not a sense of complacency within Nepal

Unfortunately, because only a small section of fault ruptured, and in this specific way, it means that there is still a very large amount of energy stored in the remainder of the fault, meaning that another very large earthquake is inevitable. It is not possible to say whether this will occur today, next week, in a month or in a century but it is very unlikely that when this earthquake occurs the rupture will behave as it did in April. Instead, the next earthquake is likely to be much, much larger and extremely damaging.

The challenge for the scientific community and disaster managers is to ensure that there is not a sense of complacency within Nepal. There is a danger that building codes will not be developed or enforced, or that landslide mitigation will not be performed, on the assumption that the structures stood up to the Gorkha earthquake, and that the hazard of another big event has now been reduced. All earthquakes are not equal, and the unexpectedly low losses that occurred in the Gorkha earthquake are unlikely to be repeated next time.

Dave Petley is Pro Vice-Chancellor (Research and Enterprise) at the University of East Anglia, and will be delivering the lecture ‘The Nepal earthquake: a warning for the future?’ at the Royal Geographical Society (with IBG) on Monday 25 January 2016

Share this story...

Submit to FacebookSubmit to Google PlusSubmit to Twitter

Related items

Leave a comment

ONLY registered members can leave comments and each comment is held pending authorisation before publishing. Please login or register to voice your opinion.

EMAIL NEWSLETTER

Get the best stories from Geographical delivered straight to your inbox each week.

Subscribe Today

EDUCATION PARTNERS

Aberystwyth UniversityUniversity of GreenwichThe University of Winchester

TRAVEL PARTNERS

Ponant

Silversea

Travel the Unknown

DOSSIERS

Like longer reads? Try our in-depth dossiers that provide a comprehensive view of each topic

  • REDD+ or Dead?
    The UN-backed REDD+ (Reducing Emissions from Deforestation and Forest Degradation) scheme, under which developing nations would be paid not to cut dow...
    The true cost of meat
    As one of the world’s biggest methane emitters, the meat industry has a lot more to concern itself with than merely dietary issues ...
    Long live the King
    It is barely half a century since the Born Free story caused the world to re-evaluate humanity’s relationship with lions. A few brief decades later,...
    London: a walk in the park
    In the 2016 London Mayoral election, the city’s natural environment was high on the agenda. Geographical asks: does the capital has a green future, ...
    The Money Trail
    Remittance payments are a fundamental, yet often overlooked, part of the global economy. But the impact on nations receiving the money isn’t just a ...

MORE DOSSIERS

NEVER MISS A STORY - follow Geographical

Want to stay up to date with breaking Geographical stories? Join the thousands following us on Twitter, Facebook and Instagram and stay informed about the world.

More articles in NATURE...

Wildlife

Aaron Gekoski continues working alongside the Wildlife Rescue Unit

Geophoto

Today, the camera is regarded as an essential smartphone feature.…

Oceans

An innovative new theory hopes to save millions of lives…

Wildlife

Aaron Gekoski continues his personal adventure into the wilds of…

Wildlife

Simple tracking devices have enabled conservationists to amass big data,…

Climate

In a new report, researchers have calculated the global emissions…

Climate

Geographical’s regular look at the world of climate change. This…

Wildlife

The latest episode sees ‘Bertie’ enlisting in wildlife rescue boot…

Energy

Icelandic engineers are attempting to harness the powerful geothermal energy…

Wildlife

New video series tracks the journey of Aaron Gekoski as…

Energy

Newly-developed ‘sustainable rubber’, produced using recycled food waste, could one…

Geophoto

This winter has seen frequent storms and flooding hitting many…

Wildlife

The bison, Poland’s symbol of nature conservation, already faces controversial…

Wildlife

Wolves have arrived at a wildlife park in Devon as…

Climate

An unassuming beach in Denmark is absorbing record-breaking levels of…

Energy

The environmental cost of military activities is significant. Could new…

Wildlife

Latest figures suggest that there are more than twice as…

Tectonics

How does the proposed allocation of ‘Zealandia’ as an independent…

Wildlife

Is extinction forever? While most would assume that yes, extinction…

Geophoto

Wide-angle photography is perhaps the best way to recreate the…